A Two-Dímensional ERK-AKT Signaling Code for an NGF-Triggered Cell-Fate Decision

Journal Club, January 2012

Erzsébet Ravasz Regan Center for Vascular Biology Research

Jia-Yun Chen, Jia-Ren Lin, Karlene A. Cimprich, Tobias Meyer, *Molecular Cell* 2012, 45(2):196-209.

Noise in cells - Part III

Sources of noise in enkaryotic cells

Consequences of noise in eukaryotic cells

• Spontaneous phenotypic heterogeneity

Image by Lei Yuan

2 mutually exclusive phenotypes in 1 population
-> advantage under abrupt
environmental change

Consequences of noíse in response to a cellular signal

A Two-Dímensional ERK-AKT Signaling Code for an NGF-Triggered Cell-Fate Decision

Jia-Yun Chen, Jia-Ren Lin, Karlene A. Cimprich, Tobias Meyer, *Molecular Cell* 2012, 45(2):196-209.

PC12 cells can undergo neuronal differentiation, or remain in a proliferative, stem-like state

PC12 - cell line from pheochromocytoma rat adrenal medulla

NGF triggers terminal differentiation in most cells

Main assay - pERK, pAKT, Brdug Neurite in single cells

pERK signal strength is a poor predictor of differentiation

2D map of pERK-pAKT signal is an excellent predictor of cell fate

Boundary is sharp, and independent of upstream signals

Cell population responds differently, but the boundary does not shift

Probability of proliferation vs differentiation

Cells with a large distance from boundary have predictable fates

Prolíferation and differentiation are mutually exclusive

Take-home 11.

Different inputs move quiescent cells onto distinct <u>regions</u> of the 2D map

HOW?

Harder a the fait for a star of the start of the second of

síRNA screen can probe the underlying circuit

Tory was the provident of they are an are the the the

Generate rat siRNA library (1308 genes) Transfect PC12 cells w/ siRNA 🖌 24 hr Wash and add 25ng/ml NGF 🖌 48 hr Pulse cells with BrdU for 4hr Fix and stain with α -BrdU & α -tubulin β III Ab

Select hits and validate the hits with different siRNAs

Proliferation

Differentiation

Prolíferation and dífferentiation are tightly coupled (change in concert)

How early are cell fate decisions predictable from the pAKT/pERK map?

TIME?

Old: all @ 24h

% S %S pAKT Mean Intensity (Log2) 11 71 50 boundary 40 30 20 10 8 10 12 pERK Mean Intensity (Log2) Neurite pAKT Mean Intensity (Log2) ,1 Rel. Scale 1.0 0.5 n 8 10 12 pERK Mean Intensity (Log2)

New: pAKT/pERK up to 24h; cell fate @ 48h

NGF signaling scheme

Secondary assays

- Ras activation (min)
- Early gene induction (min - hours)
- Long term signaling (hours - days)

time

Neurite growth & Cessation of proliferation p-ERK (5min & 1h) EGR-1 induction (1h)

Long-term ERK & AKT phosphorylation (24h)

Neurite length (48h) & Percent in S phase (48h)

pERK levels at 24 hours predict cell fate at 48h

Short-term signals may be altered without changing cell fate, as long as long-term effects remain unchanged.

PERK and PAKT are positively correlated at 24 hours

siRNA perturbations tend not to shift the NGF-treated population far from the (nearly diagonal) boundary

síRNA perturbations rarely shift the NGFtreated population far from the boundary

sirnas have two distinct effects on the 2D map / cell population relationship pAKT **Boundary Population** shift shift - boundary pERK pAKT pAKT **pERK pERK** undary (Log2) Rel. movement of population 1.0 • si-cell cycle • - U0126 other GFs o ← Pten orthogonal to the bod 0 -0.5 • - NGF+Serum Cyclin D1/D3 ± SD Rasa2-LY294002 -5 5 -10 0 Relative boundary shift (%S)

Take-home III.

<u>Downstream</u> - CyclínD1/D3 knockdown índuced a strong shíft ín cell fate boundary

CyclinD1/D3 are critical for transducing the combined effect of pAKT/pERK

PAKT upregulates, pERK downregulates CyclínD1 proteín level

Take-home IV.

The combined effect of pAKT/pERK translates to proliferation or differentiation by affecting CyclinD protein stability

<u>Upstream</u> - PIP3 shifts the NGF treated population into the proliferation "region"

PIP3 regulates the population position <u>orthogonal</u> to the boundary

HOW?

Harder a the fait for a star of the start of the second of

Rasa2 provídes a potentíal mechanism of PI3K induced pERK inhibition

Rasaz blocks the activity of Ras

Rasa2 membrane localization and RasGAP activity requires active PI3K

PIP3 binding is critical for RasGAP activity of Rasa2

Mutant Rasa2, no PIP3 binding

biosensor

All together (Take-home V.):

When does Rasa2 regulate cell fate?

NGF induces two waves of RAS activity

Second wave: NGF induces expression of its receptor, TrkA, via pERK

Ε

Take-home VI.

a ten was some correct

Rasa2 acts as negative feedback on the NGF -> Ras -> pERK -> NGF loop

Rasa2 positions the population onto the boundary

Rasa2 helps expand the number of cells during differentiation

Take-home VII.

PC12 cells hedge their bets to perform two mutually exclusive functions - <u>as a population</u>

Conclusions and discussion

рАК 7

pERK

CyclinD1/D3 are essential for translating pAKT-pERK map to cell fate

Bet hedging relies on Rasa2 feedback to position population onto the boundary

As a population, PC12 cells perform two mutually exclusive functions

Summary

Strengths

The state of the s

Strengths:

 Conceptual backbone -> insight into how the signaling is structured

• very clear logic, beautiful flow

• 2 hits in 1308 sirnA screen with <u>large</u> consistent effect -> both tied to pERK/pAKT system with direct interactions

Strengths and weaknesses (cont.)

Weaknesses:

- Experimental? (still not quite qualified to really know...)
- Conceptual (small weakness, in discussion)

Response in pAKT & pERK is perfectly unimodal

> NEED multi-stable switches downstream

> > Not discussed at all...

Outlook: AKT and ERK in endothelial biology

Ren, B. *et al.* ERK1/2-Akt1 crosstalk regulates arteriogenesis in mice and zebrafish. *J Clin Invest* 120, 1217–1228 (2010). Hayashi, H. & Kume, T. Foxc transcription factors directly regulate DII4 and Hey2 expression by interacting with the VEGF-Notch signaling pathways in endothelial cells. *PLoS ONE* 3, e2401 (2008).

Food for thought

What does this 2D map look like in ECs?

Path to differentiation

How does the boundary depend on context?

input to EC angiogenic sprouting arterial fate specification arterial fate maintenance inflammation